Hamiltonian Cycle in K1,r-Free Split Graphs — A Dichotomy

نویسندگان

چکیده

For an optimization problem known to be NP-Hard, the dichotomy study investigates reduction instances determine line separating polynomial-time solvable vs NP-Hard (easy hard instances). In this paper, we investigate well-studied Hamiltonian cycle (HCYCLE), and present interesting result on split graphs. T. Akiyama et al. (1980) have shown that HCYCLE is NP-complete planar bipartite graphs with maximum degree [Formula: see text]. We use show for text]-free Further, algorithms in believe structural results presented paper can used similar path other variants of (path) problems.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hamiltonian Path in Split Graphs- a Dichotomy

In this paper, we investigate Hamiltonian path problem in the context of split graphs, and produce a dichotomy result on the complexity of the problem. Our main result is a deep investigation of the structure of $K_{1,4}$-free split graphs in the context of Hamiltonian path problem, and as a consequence, we obtain a polynomial-time algorithm to the Hamiltonian path problem in $K_{1,4}$-free spl...

متن کامل

Hamiltonicity in Split Graphs - A Dichotomy

In this paper, we investigate the well-studied Hamiltonian cycle problem, and present an interesting dichotomy result on split graphs. T. Akiyama, T. Nishizeki, and N. Saito [22] have shown that the Hamiltonian cycle problem is NP-complete in planar bipartite graph with maximum degree 3. Using this reduction, we show that the Hamiltonian cycle problem is NP-complete in split graphs. In particul...

متن کامل

Complexity of Steiner Tree in Split Graphs - Dichotomy Results

Given a connected graph G and a terminal set R ⊆ V (G), Steiner tree asks for a tree that includes all of R with at most r edges for some integer r ≥ 0. It is known from [ND12,Garey et. al [1]] that Steiner tree is NP-complete in general graphs. Split graph is a graph which can be partitioned into a clique and an independent set. K. White et. al [2] has established that Steiner tree in split gr...

متن کامل

Cycle spectra of Hamiltonian graphs

We prove that every Hamiltonian graph with n vertices and m edges has cycles of at least √ 4 7(m − n) different lengths. The coefficient 4/7 cannot be increased above 1, since when m = n2/4 there are √ m − n + 1 cycle lengths in Kn/2,n/2. For general m and n there are examples having at most 2 ⌈

متن کامل

Squeeze-free Hamiltonian Paths in Grid Graphs

Motivated by multi-robot construction systems, we introduce the problem of finding squeeze-free Hamiltonian paths in grid graphs. A Hamiltonian path is squeeze-free if it does not pass between two previously visited vertices lying on opposite sides. We determine necessary and sufficient conditions for the existence of squeeze-free Hamiltonian paths in staircase grid graphs. Our proofs are const...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: International Journal of Foundations of Computer Science

سال: 2021

ISSN: ['1793-6373', '0129-0541']

DOI: https://doi.org/10.1142/s0129054121500337